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High levels of lead found in 1 in 5 newborns
Sept. 28, 2017 --

A study of newborn blood samples tested at the State Hygienic Laboratory revealed surprising results that
affect both rural and urban Iowans.

The research, published earlier this year
in the scientific journal PLOS ONE,
showed one in five newborns had high
blood lead levels, regardless of whether
their mother lived in a city or a rural area.

"That was always thought to be an urban
problem," said Donald Simmons,
manager of the Ankeny laboratory and
co-author of the study. "In Iowa, it's all
over the place."

Simmons said previous studies have
shown concentrations of children with
high blood lead levels in cities such as
Baltimore, but little research exists into
blood lead levels in newborns, particularly
in rural settings.

The higher levels statewide likely are related to the amount of pre-1940s housing stock in Iowa, when lead
paint was commonly used, he said, adding, "the older the housing, the more risk of lead being in the house
because of the paint."

Other sources of lead include factories, coal mining and vehicle exhaust from leaded gasoline – banned in
1996 for sale in the U.S. for on-road vehicles – and even from soil, where lead accumulates.

"It binds to a lot of different things," Simmons said. "It's ubiquitous."

Lead can cross the placental barrier, according to the U.S. Centers for Disease Control & Prevention,
meaning pregnant women who are exposed to lead also expose their unborn child, which can damage the
developing baby’s nervous system. Even low-level lead exposures in developing babies have been found to
affect behavior and intelligence, the CDC notes. Lead exposure can cause miscarriages, stillbirths, infertility
and, at very high exposure levels, even death.

Staff at the Ankeny lab tested 2,300 dried blood spots collected within one to three days of birth from Iowa
newborns which were linked with the area of the mother’s residence at the time of birth.

The blood was collected under the Iowa Newborn Screening Program. The program is part of the Iowa
Department of Public Health, and is a collaborative effort between the IDPH, the State Hygienic Laboratory,
the University of Iowa Stead Family Children’s Hospital and Central Delivery Service of Iowa

The Hygienic Lab screens newborns for inherited diseases, such as sickle cell anemia, cystic fibrosis and a
host of other disorders, with the goal of providing lifesaving treatment in identified cases.

Newborn screening, however, does not include routine testing for lead, Simmons noted, though the lab also
performs blood lead screening for children in Iowa.

Researchers in the study found that one in five Iowa newborns exceeded the five micrograms of lead per
deciliter of blood (μg/dL) action level set by the CDC.

In addition to the association to pre-1940s housing, the study used census data to determine that elevated
blood lead levels were associated with childbearing-age women with low educational status in both rural and
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urban settings, which Simmons said is related to socioeconomic status and housing.

While the CDC notes that no blood lead level in children is currently thought to be safe, 5 μg/dL has been
identified as the amount that should prompt further medical attention, with about 1 in 40 American children
having at least that level in their blood.

The effects of even low levels of lead in blood, which include inability to pay attention and lower IQ, appear to
be irreversible, according to the CDC, and children are more at risk than adults because their blood-brain
barrier is not fully developed.

Lead contaminated water in Flint, Mich., brought the issue to national attention in recent years.

Newborn blood samples in the Iowa study were tested for lead in 2006 but given that there was no way to
identify the mothers or newborns, no follow-up was conducted, Simmons said.

The article noted that analysis of newborn dried blood spots is an important tool for lead poisoning
surveillance in newborns and can direct public health efforts towards specific places and populations where
lead testing and case management will have the greatest impact.

"There needs to be more research done for this population," Simmons said. "This opens the discussion."

Audrey Saftlas, Professor Emeritus of the Department of Epidemiology at the University of Iowa College of
Public Health (CPH) oversaw the mapping research.

In addition to Saftlas and Simmons, co-authors of the study included Brian Wels, SHL environmental lab
specialist; Margaret Carrel, assistant professor, CPH Department of Epidemiology and College of Liberal Arts
and Sciences Department of Geographical and Sustainability Sciences; David Zahrieh, a former CPH biostat
Ph.D. student; Jacob Oleson, associate professor, CPH Department of Biostatistics; Kelli Ryckman, associate
professor CPH Department of Epidemiology, and former SHL Public Health Ambassador; and Sean Young,
adjunct assistant professor, College of Liberal Arts and Sciences Department of Geographical and
Sustainability Sciences.
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Abstract

Lead in maternal blood can cross the placenta and result in elevated blood lead levels in

newborns, potentially producing negative effects on neurocognitive function, particularly if

combined with childhood lead exposure. Little research exists, however, into the burden of

elevated blood lead levels in newborns, or the places and populations in which elevated

lead levels are observed in newborns, particularly in rural settings. Using ~2300 dried bloods

spots collected within 1–3 days of birth among Iowa newborns, linked with the area of moth-

er’s residence at the time of birth, we examine the spatial patterns of elevated (>5 μg/dL)

blood lead levels and the ecological-level predictors of elevated blood lead levels. We find

that one in five newborns exceed the 5 μg/dL action level set by the US Centers for Disease

Control & Prevention (CDC). Bayesian spatial zero inflated regression indicates that ele-

vated blood lead in newborns is associated with areas of increased pre-1940s housing and

childbearing-age women with low educational status in both rural and urban settings. No dif-

ferences in blood lead levels or the proportion of children exceeding 5 μg/dL are observed

between urban and rural maternal residence, though a spatial cluster of elevated blood lead

is observed in rural counties. These characteristics can guide the recommendation for test-

ing of infants at well-baby appointments in places where risk factors are present, potentially

leading to earlier initiation of case management. The findings also suggest that rural popula-

tions are at as great of risk of elevated blood lead levels as are urban populations. Analysis

of newborn dried blood spots is an important tool for lead poisoning surveillance in newborns

and can direct public health efforts towards specific places and populations where lead test-

ing and case management will have the greatest impact.

PLOS ONE | https://doi.org/10.1371/journal.pone.0177930 May 16, 2017 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Carrel M, Zahrieh D, Young SG, Oleson J,

Ryckman KK, Wels B, et al. (2017) High prevalence

of elevated blood lead levels in both rural and urban

Iowa newborns: Spatial patterns and area-level

covariates. PLoS ONE 12(5): e0177930. https://doi.

org/10.1371/journal.pone.0177930

Editor: Jaymie Meliker, Stony Brook University,

Graduate Program in Public Health, UNITED

STATES

Received: December 21, 2016

Accepted: May 5, 2017

Published: May 16, 2017

Copyright: © 2017 Carrel et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Due to ethical

restrictions imposed by the Iowa Department

of Public Health (https://idph.iowa.gov/

PublicHealthData), data are available upon request.

Data may be requested from the corresponding

author (margaret-carrel@uiowa.edu; telephone:

319-335-0154).

Funding: This study was supported by a seed grant

from the University of Iowa Center for Health

Effects of Environmental Contaminants (CHEEC).

https://doi.org/10.1371/journal.pone.0177930
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177930&domain=pdf&date_stamp=2017-05-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177930&domain=pdf&date_stamp=2017-05-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177930&domain=pdf&date_stamp=2017-05-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177930&domain=pdf&date_stamp=2017-05-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177930&domain=pdf&date_stamp=2017-05-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177930&domain=pdf&date_stamp=2017-05-16
https://doi.org/10.1371/journal.pone.0177930
https://doi.org/10.1371/journal.pone.0177930
http://creativecommons.org/licenses/by/4.0/
https://idph.iowa.gov/PublicHealthData
https://idph.iowa.gov/PublicHealthData
mailto:margaret-carrel@uiowa.edu


Introduction

Lead is a ubiquitous and highly potent human toxicant that readily crosses the placenta of the

developing fetus, and impairs the development and function of multiple organ systems [1, 2].

The physiologic stress of pregnancy can stimulate mobilization of lead from bone into mater-

nal blood, particularly when calcium demands are high [3]. Hence, maternal bone stores of

lead represent an endogenous reservoir and potential source of fetal lead exposure. Factors

that may increase transfer of lead to the fetus include high maternal blood pressure [2, 4], low

calcium levels and milk intake [5], low hemoglobin levels and anemia [3], and alcohol intake

in the third trimester of pregnancy [6]. Environmental and lifestyle exposures (e.g. leaded

paint or pipes in older houses, leaded gasoline, leaded soil or dust or air pollution, leaded food

and cosmetic products, cigarette smoke, consumption of fish) also influence maternal, and, by

extension, fetal blood lead levels [7–10].

It is well established that childhood lead exposure causes impairments in central neurologi-

cal function, increasing the risk of a wide spectrum of developmental delays, intellectual defi-

cits, and behavioral problems [11–14]. These developmental delays associated with higher lead

levels are observable within hours following birth [15]. Greater neurocognitive effects are seen

in children with blood lead levels of 5–10 μg/dL or more, as compared to those with levels of

1–2 μg/dL [16–18]. However, in utero exposure to maternal blood lead levels <10 μg/dL pro-

duces neurotoxic effects at the lowest levels studied [7, 19–21]. For this reason, in 2012 the

Centers for Disease Control & Prevention (CDC) lowered the level of concern for blood lead

from >10 μg/dL to>5 μg/dL.

Despite dramatic declines in blood lead levels in all segments of the population over the

past several decades, disparities in the burden of lead exposure persist with levels highest

among low-income families, those living in pre-1940s housing, non-Hispanic blacks, and

immigrants from countries where leaded gasoline and lead-containing consumer products are

in current or recent use [22–25]. Exposure to lead can also come via contaminated outdoor

soils, from legacy sources of lead such as leaded gasoline, or via re-suspended particulate mat-

ter in air pollution [26–28]. A strong seasonal component to atmospheric and soil exposure

has been shown, leading to elevated blood lead levels in children exposed to greater amounts

of leaded soil and dust and particulate matter during warmer months [29–33]. Recent events,

namely in Flint, Michigan, have brought lead poisoning back into the consciousness of the

general public [34]. Though newborn infants are at risk for the adverse effects of lead exposure

and poisoning the primary focus in the public health and research communities is on exposure

and poisoning in older children.

The literature examining lead exposure or poisoning in childhood focuses predominantly

on urban communities [26, 32, 35–49]. Few studies examine rural inhabitants, particularly

rural children, and those that do often find lower lead exposure or lower blood lead levels in

rural versus urban populations [24, 50–58]. While the density of children exposed to lead in

rural areas is lower than that in urban areas, the potential for exposure is still high as many of

the same environmental and lifestyle risk factors are at play in rural areas. Approximately one

third of Iowa’s residents live in rural areas, though these rural areas comprise the majority of

the landmass of Iowa.

This study, utilizing data from newborns in Iowa, seeks to understand the rural/urban vari-

ation in lead levels observed in newborns, as well as the spatial patterns of elevated blood lead

levels and their area-level covariates. In doing so, we identify the prevalence of Iowa newborns

with lead levels that require case management, detect any differences in rural versus urban pat-

terns of elevated blood lead and explore places and populations where elevated blood lead lev-

els are most likely to occur.

Spatial patterns of elevated blood lead levels in Iowa newborns
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Materials and methods

To determine blood lead levels in Iowa newborns, newborn dried blood spot samples were col-

lected as part of routine newborn screening over a 5-month period in 2006 and sequentially

analyzed at the State of Iowa Hygienic Laboratory. Two, 1/8-inch diameter punches were

obtained using a Wallac Multipuncher (Model# 1296–081). Samples were transferred to

96-well microfilter plates (Millipore, Cat. #MSBVN1210) and extracted using a solution con-

taining 1% tetramethylammonium hydroxide, 1% isopropyl alcohol, and 0.1% ammonium

pyrrolidine dithiocarbamate. Extraction was accomplished using mild agitation on a table

shaker for one hour followed by filtration. Small well volumes afforded by the microfilter plates

limited the sample volume to 0.3 mL allowing for only one analysis per extraction. The blood

volume was estimated to be 6 μL resulting in a 1:50 dilution of the blood. Lead analysis was

conducted using inductively coupled plasma mass spectrometry (ICP-MS, PerkinElmer Elan

DRC II). The signals from multiple lead isotopes (206, 207, and 208) were summed to account

for natural variations in isotopic abundances. A CLIA reviewed routine whole blood analysis

methodology was employed to analyze the blood samples by ICP-MS. The instrument was cali-

brated using external standards prepared with whole blood and extraction solution in approxi-

mately the same ratio as specimens. All measurements are reported in units of micrograms

(μg) per deciliter (dL).

This project was deemed not human subjects research by the University of Iowa IRB. No

identifiers, such as complete residential address at time of birth, were associated with the dried

blood spots and they were collected as part of a routine state newborn metabolic disorder sur-

veillance program.

Exclusions from the analysis were made for the following reasons: blood samples from

three plates contained negative values, thus all samples from those plates were excluded from

the analysis (n = 92); any samples with relative standard deviations of>10%, an indicator of

poor precision or of levels at or below the detection limit, were also discarded (n = 18); one

sample had a blood lead level of>80 μg/dL and was deemed an extreme outlier. Blood samples

missing the mother’s ZIP code of residence were excluded as many women in Iowa travel out-

side of their ZIP code area to give birth, particularly rural women—thus the ZIP code of the

hospital where the delivery took place would not accurately represent the population or envi-

ronment where the mother resides (n = 181).

Blood lead levels in newborns were assigned to the ZIP code of mother’s residence, and

then further classified into ZIP code tabulation areas (ZCTAs). ZCTAs represent aggregations

of Census block groups where the majority of residents share the same ZIP code, and are gen-

erated by the Census Bureau to allow comparison of ZIP code data to sociodemographic data

collected in Census-defined geographies. ZCTAs were further classified as urban or rural to

explore potentially different spatial patterns and ecological covariates. A ZCTA was designated

as urban if it intersected with the urbanized areas of Iowa, as defined by the 2010 Census (US

Census Bureau) or as rural if they did not intersect with urbanized areas. Urbanized areas are

defined by the Census as having a population of>50,000 with a density of at least 500 people

per square mile. The assignment of urban/rural status was completed in ArcMap 10.3 (Esri,

Redlands, CA).

The outcome variable of interest is the count of blood samples in a ZCTA that are>5 μg/dL,

the reference level currently recommended by the US CDC. Additionally, a level of>10 μg/dL

was used based upon the reference level recommended by the CDC at the time the blood sam-

ples were taken[59].

The Wilcoxon-Mann-Whitney test was used to detect significant differences in the distribu-

tion of blood lead levels between rural and urban newborns and a chi-square test was used to

Spatial patterns of elevated blood lead levels in Iowa newborns
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detect differences in the number of rural versus urban children whose blood lead levels

exceeded the 5 μg/dL or>10 μg/dL reference levels set by the CDC. Statistical calculations

were carried out in R. P-values are two-sided. P-values less than 0.05 were deemed statistically

significant.

Descriptive mapping of the locations of births as well as the associated lead levels were cre-

ated in ArcMap 10.3. Points were randomly generated within each ZCTA equal to the number

of samples in that ZCTA, and were distributed within ZCTA bounds so that areal summary

measures would be avoided in mapping and spatial analysis. These random points were further

used for hotspot analysis to explore whether observations of elevated lead levels were randomly

spatially patterned or clustered in certain neighboring ZCTAs. The continuous value of blood

lead was used as the outcome variable rather than a dichotomous measure of above/below the

CDC threshold. Optimized hotspot analysis (OHSA) is a tool designed to identify significant

spatial clusters of high or low values. OHSA corrects for spatial dependence within data and

for multiple testing. Given that the presence of spatial clusters could be influenced by the

assignment of lead levels to the randomly distributed points within ZCTAs, we randomly per-

muted the assignment of points in each ZCTA and iterated the OHSA one thousand times.

Hotspots that persisted in space even when points were permuted (present >950 times) were

deemed to be authentic hotspots rather than an artifact of the arbitrary spatial distribution of

data points within ZCTAs.

To explore how variation in ZCTA-level ecological variables is associated with the spatial

variation in counts of elevated lead levels (>5 μg/dL or>10 μg/dL) in newborn blood samples,

we undertook a Bayesian disease mapping analysis. See [60] for specifics on Bayesian disease

mapping spatial models. Nearly half (449) of the 935 ZCTAs in Iowa did not experience a new-

born during the study design’s 5-month data collection window. If no newborns occurred

within a ZCTA, then the ZCTA was not eligible for a non-zero response (i.e. count >5 μg/dL).

These responses are referred to as structural zeros. Of the remaining 486 ZCTAs that experi-

enced a newborn with assessable blood samples during the data collection window, many had

zero or one sample exhibiting elevated lead levels, indicating that the counts of elevated lead

levels is governed by a Poisson (λ) distribution. Therefore, our data arise from two zero gener-

ating processes. In one process, the outcome is always a zero count, while in the other process

the counts, some of which may be zero, follow a standard Poisson process.

To account for these two generating processes, a spatial zero-inflated Poisson (ZIP) regres-

sion model, which allows for an over-abundance of zero counts and includes spatial random

effects, was used to fit the data using Bayesian methods [61]. In other words, with probability p

we sample a degenerate distribution at 0 and with probability (1 –p) we sample a Poisson (λ)

distribution. In our spatial ZIP model, log (λ) is assumed to be a linear function of a set of

regional level covariates and a spatial random effect while log (p / (1-p)) is assumed; initially

log (p / (1-p)) was assumed to be a linear function of the regional covariates, however, the esti-

mated posterior distributions of the coefficients associated with those covariates covered a

wide range and included zero. Since we know the proportion of ZCTAs (48.0%) that did not

experience a newborn during the study design’s 5-month data collection, this information was

included in the prior distribution placed on each pi (i = 1,. . .,935) in the spatial ZIP model. As

a sensitivity analysis, the Bayesian analysis was repeated assuming standard Poisson regression

with inclusion of spatial random effects. For that, the 449 ZCTAs were treated as missing

counts rather than structural zeros and the missing counts were incorporated in the joint pos-

terior distribution.

The objective of the Bayesian spatial ZIP regression analysis is to determine which of several

regional level covariates, when assessed in the presence of each other, predict the presence of

elevated blood lead levels (>5 μg/dL or >10 μg/dL) in Iowa newborns. The right hand side of

Spatial patterns of elevated blood lead levels in Iowa newborns
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the model is a function of 6 regional level covariate effects, an offset, and a random spatial

effect. Data on hypothesized covariates of newborn blood lead levels were acquired from the

2007–2011 American Community Survey (ACS). While the newborn lead data was collected

in 2006, ACS data is not available at the ZCTA scale for that year. The ACS from 2007–2011

was chosen over the decadal census from 2000 or 2010 as better representing the population

being studied in 2006. The potential for household exposure to lead via lead-based paint, was

assessed via the inclusion of the percentage of houses in the ZCTA built prior to 1940. While

lead was phased out of paint products in the 1950s-1970s and banned in the US in 1978,

research in the US indicates that houses built prior to 1940 are associated with much higher

risk of lead exposure than those built in following decades [62–64]. The potential for maternal

exposure in countries where environmental lead exposure is more prevalent is captured by the

percent of women in a ZCTA who were foreign born. Low education and income are often

predictors of high lead exposure. Thus, the percentage of women of reproductive age (i.e., ages

18–44) living in poverty and the percentage who had less than a college education are calcu-

lated for each ZCTA from the Census ACS data. Median household income in each ZCTA is

also taken from the ACS. Urban and rural designation for each ZCTA, was also included as it

was hypothesized to delineate risk of lead poisoning. To control for greater numbers of sam-

ples potentially occurring in ZCTAs where there were greater numbers of women of reproduc-

tive age, the total number of women ages 18–44 was calculated for each ZCTA and the natural

logarithm of the corresponding total was included in the model as an offset variable. For the

outcome variable (>5 μg/dL or>10 μg/dL), further exploratory analyses included the assess-

ment of all two-way interactions between the designation of urban and rural and one of the

other 5 explanatory variables. The goal was to ascertain if the magnitude of the effect for each

explanatory variable was different according to the rural and urban designation of the ZCTA.

The distribution of three of the covariates did not deviate from a normal distribution.

These three covariates were centered and standardized prior to inclusion in the spatial ZIP

model. The skewed right distribution of the percent women in poverty was dichotomized at

the median (1 if > 11.51%; 0 otherwise). As the covariate for being foreign born was severely

skewed to the right, it was dichotomized at the 75th percentile (1 if > 2.45%; 0 otherwise).

Seven ZCTAs were missing regional covariate information from the ACS. Single imputation

was used on a variable by variable basis, assuming missing at random. The imputation models

used were predictive mean matching and logistic regression for the continuous covariates and

dichotomous covariates, respectively.

To analyze spatial effects, we used a conditional autoregressive (CAR) model. Specifically,

we used the intrinsic CAR model to specify the spatial association, which includes a precision

parameter. Spatial association is defined through a neighborhood structure where one region

is related with other regions that share a common border, determined by an adjacency matrix

(first order Queen’s contiguity) generated in ArcMap 10.3.

Priors were chosen to ensure a proper posterior distribution. Relative vague Normal priors

were chosen for the covariate parameters, and the spatial standard deviation prior was uniform

(0,100). A Beta(2, 2) prior (i.e. with mean 0.5) was placed on each of the pi (i = 1,. . .,935). Poste-

rior summary statistics are based on three chains with 50,000 iterations per chain and a 25,000

burn-in period for each chain. To decrease autocorrelation, samples were thinned, using only

every tenth step in the sampler. The model was programmed using OpenBUGS [65, 66].

Results

There are a total of 2376 observations in our final sample (S1 File). For each case, we identified

the ZCTA of residence among the 935 ZCTAs in Iowa. There were true-zero observations in

Spatial patterns of elevated blood lead levels in Iowa newborns
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449 (48.0%) of the ZCTAs, with a mean of 4.9 and median of 2.0 observations per ZCTA

(Fig 1).

The median [minimum, maximum] lead level was 2.47 μg/dL [0.09, 39.19] (Fig 2). The

lower and upper quartiles were 1.53 μg/dL and 4.59 μg/dL, respectively, while the mean

Fig 1. Number of samples per ZCTA included in the study (areas of white represent ZCTAs with no samples). The

location of urban areas in Iowa with populations over 50,000 people are shown for reference.

https://doi.org/10.1371/journal.pone.0177930.g001

Fig 2. Distribution of ZCTAs with samples exhibiting elevated lead levels. The majority of ZCTAs had

zero samples above the 5 μg/dL and 10 μg/dL thresholds.

https://doi.org/10.1371/journal.pone.0177930.g002
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(standard deviation) lead level was 3.57 μg/dL (3.382). There were 22.0% (n = 523) of the sam-

ples with lead levels above the clinically relevant reference level>5 μg/dL and 3.7% (n = 89) of

samples above the reference level>10 μg/dL.

Plotting the distribution of blood lead levels in newborns according the urban/rural status

of the ZCTA of mother’s residence indicated a high degree of similarity (Fig 3). A Wilcoxon-

Mann-Whitney test found no significant difference in continuous lead values between urban

and rural areas (p = 0.97). Similarly, a chi-square test found no significant differences in the

number of urban (261/1195) versus rural children (262/1181) whose blood lead levels exceed

5 μg/dL (p = 0.87). No significant difference was found for urban (43/1195) versus rural

(45/1181) children with lead levels exceeding 10 μg/dL (p = 0.78).

The spatial distribution of ZCTA-level mean and median blood lead levels do not suggest

strong spatial patterning (Fig 4). ZCTAs with low mean and median levels are neighbored

Fig 3. Distribution of blood lead levels in Iowa newborns stratified by mother’s residence in rural and urban ZCTAs. Current and

previous CDC reference levels of 5 μg/dL and 10 μg/dL are included for context.

https://doi.org/10.1371/journal.pone.0177930.g003
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by those with high lead levels. When random points representing individual newborns are per-

muted inside of ZCTAs, an area in the central western portion of the state has a hotspot of

high blood lead levels (Fig 5). This hotspot is persistent across the random redistribution of

points within ZCTAs, and was detected 972/1000 times (quasi p-value = 0.028). Located in a

rural ZCTA, the observations (n = 10) within this ZCTA had lead levels ranging from 1.5 μg/

dL to 36.7 μg/dL, and a mean of 9.94 μg/dL and median of 4.74 μg/dL.

Assuming a spatial ZIP regression model, univariate analysis of the hypothesized regional

covariates with the outcome of>5 μg/dL of lead in newborn blood samples were similar to the

multivariate analysis (data not shown). When all 6 regional covariates are included in the

Bayesian spatial ZIP regression model for the outcome of>5 μg/dL the variables maternal

poverty, foreign born, and median income are not significant predictors of lead levels based on

the 95% credible interval (i.e. the 95% credible intervals include zero) (Table 1). Adjusting for

the other covariates, ZCTAs with a higher proportion of women with less than a college degree

are associated with elevated blood lead levels. Similarly, after controlling for the other covari-

ates, ZCTAs with an increased proportion of pre-1940s housing are more likely to have ele-

vated blood lead levels. While inference was not sensitive to other functional forms of the

covariate percent in poverty, inference was sensitive to dichotomizing the covariate percent

foreign-born at two other cut-points explored, namely, at the 25th and 50th percentiles (0%

and 0.7%, respectively). The estimated coefficient remained negative, but the 95% credible

interval excluded zero.

While assuming a spatial ZIP model, we performed separate exploratory analyses that

examined how the urban/rural variable interacted with each of the other 5 explanatory vari-

ables. Each model comprised the explanatory variable urban/rural, one other explanatory vari-

able, and the two-way interaction. The estimated posterior distribution for the coefficient

associated with each interaction term was variable and crossed zero. Thus, rural or urban des-

ignation was not a significant predictor of increased counts of lead levels >5 μg/dL in ZCTAs.

For the outcome of>10 μg/dL counts in ZCTAs, none of the coefficients were well esti-

mated; all estimated posterior distributions covered a wide range and crossed zero.

Fig 4. Spatial patterns of mean and median blood lead levels in Iowa newborns included in the study. The location of urban areas in Iowa with

populations over 50,000 people are shown for reference.

https://doi.org/10.1371/journal.pone.0177930.g004
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Discussion

A large portion of the newborns sampled in this study had blood lead levels that were higher

than the CDC guidelines set in 2012. There is no safe level of lead as even very small amounts

are able to cause neurocognitive defects, but amounts >5 μg/dL are now recommended to

receive case management by health professionals [67]. Approximately one in five newborns

included in the study, with similar distribution in rural and urban areas of the state, had blood

lead concentrations above the action level.

The>5 μg/dL action level was determined using the top 2.5% of lead levels observed in chil-

dren in the 2007–2008 and 2009–2010 National Health and Nutrition Examination Survey

(NHANES). Other studies, however, have observed blood lead levels >5 μg/dL in over ten per-

cent of children tested (without lead pipes servicing the home) and in over twenty-five percent

of children tested (with lead servicing the home) [36]. Thus, while our study identifies a much

higher prevalence of elevated blood lead levels in Iowa newborns it is not outside the realm of

possibility. It should also be noted that the CDC action level is for children ages 1–5 and our

study population is composed of newborn infants less than 3 days old. Blood lead levels have

been shown to vary, both increasing and decreasing, with repeat measurements from birth

through older ages [68]. Additionally, the measures of blood lead concentrations included in

this study are from dried blood spots rather than whole blood measures. Research indicates,

however, that dried blood spot levels are correlated with whole cord blood levels under careful

Fig 5. ZCTA with blood lead observations belonging to hotspots, persistent over random permutations of points.

The location of urban areas in Iowa with populations over 50,000 people are shown for reference.

https://doi.org/10.1371/journal.pone.0177930.g005
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sampling procedures (data in preparation) and with venous whole blood samples in both hos-

pital and community collection settings [69, 70].

The potential for lead contamination of the dried blood spot cards, as has been observed in

other studies, cannot be ruled out though precautions were taken to prevent contamination

[71–75]. Microfilter plates were rinsed with 2% nitric acid prior to use and reagents were

screened for lead contamination. Dried blood spots were handled with Teflon1-coated for-

ceps. Blank filter punches were randomly selected for analysis to determine the potential pres-

ence of lead in filter paper. Of 184 blank filters analyzed, the majority (167/184, 90.8%) were

<1.0 μg/dL and all but two were less than 4 μg/dL and (Table 2). The two which exceed 4 μg/

dL were determined to be 5.3 and 15.8 μg/dL. However, contamination and other random

errors are expected to exhibit non-differential spatial bias, in that the samples are tested as they

Table 1. Spatial zero-inflated Poisson regression of hypothesized area covariates for the outcome of

counts of blood lead levels >5 μg/dL in ZCTAs.

Variable Description Counts of Lead Levels > 5 μg/dL

Mean (SD)e 95% Credible Intervale

Intercept -6.3160

(0.1249)

[-6.5620, -6.077]

% of Childbearing Women in Povertya -0.1153

(0.1416)

[-0.3921, 0.1628]

% of Childbearing Women Foreign Bornb -0.1563

(0.1388)

[-0.4269, 0.1159]

% of Housing Built Before 1940c 0.1609 (0.0733) [0.0157, 0.3035]

% of Childbearing Women with Less Than a College

Educationc
0.2391 (0.0861) [0.0713, 0.4084]

Median Household Incomec,d 0.0242 (0.0734) [-0.1187, 0.1704]

Urban vs. Rural -0.1196

(0.1785)

[-0.4785, 0.2237]

Spatial Standard Deviation 0.5699 (0.1785) [0.2701, 0.8580]

a The variable percent of childbearing women in poverty was treated as a categorical variable in the analysis;

(1 if the percent was greater than the 50th percentile of 11.51% and 0 otherwise).
b The variable percent of childbearing women who were foreign born was treated as a categorical variable in

the analysis; (1 if the percent was greater than the 75th percentile of 2.45% and 0 otherwise).
c The other 3 covariates were treated as continuous covariates, centered and standardized to obtain model

stability.
d The covariate median household income is per $10000.
e % = Percent. SD = Standard Deviation. Posterior summary statistics are based on three converged chains

with 10,000 iterations per chain, with the first 5,000 iterations discarded as a burn-in period. To decrease

autocorrelation, samples were thinned, using only every fiftieth step in the sampler.

https://doi.org/10.1371/journal.pone.0177930.t001

Table 2. Distribution of lead values in blank filter paper used for analysis.

Number of filter blanks Pb range (μg/dL)

80 < 0.1

39 0.1 to < 0.2

48 0.2 to < 1.0

6 1.0 to < 2.0

4 2.0 to < 3.0

5 3.0 to < 4.0

2 > 4.0

https://doi.org/10.1371/journal.pone.0177930.t002
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are delivered to the hygienic laboratory and are not run only with other samples from the hos-

pital of delivery. Thus, any contamination present in the study is not disproportionately associ-

ated with a specific region of the state, or the sociodemographic covariates from that region.

Additionally, blood spots are an established way to screen for elevated blood lead levels, and

the filter paper used in the study meets the approval standards for statewide newborn screen-

ing [76, 77].

The NHANES sample population is drawn primarily from urban populations, and our

analysis is comprised of approximately equal numbers of rural and urban newborns [78].

Thus, we may be capturing a larger number of newborns with risk exposure in rural environ-

ments than nationally representative NHANES data. Our analyses identified a single hotspot

in Iowa where the lead levels for newborns in ZCTAs are consistently elevated; this hotspot is

found in a rural ZCTA in the west-central portion of the state, crossing the boundary between

Boone, Dallas and Green counties. Data on elevated lead levels in children in Iowa counties

reported to the CDC in 2006, the same year as the current study’s cohort was obtained, indi-

cates that these three counties had case rates of 0.8%-1.6%, higher than many other Iowa coun-

ties, but were not among the counties with the top five case rates [79].

Most studies that have examined urban versus rural differentials in blood lead levels in chil-

dren have found urban residence to be associated with higher lead levels or greater numbers

of children exceeding a risky threshold level. One study, in North Carolina, found rural resi-

dence to be a significant risk factor for having blood lead levels of>15 μg/dL and that this

effect was stronger for black males [55]. Prior research in Canada has indicated similar fre-

quency distributions of cord blood lead levels in newborns across the rural/urban divide but

higher numbers of urban children with elevated cord blood lead [80]. We find that not only is

the frequency distribution of blood lead levels between rural and urban Iowa newborns similar

but so too are the numbers of children exceeding the CDC action level of 5 μg/dL. Due to data

limitations we are unable to explore, as the North Carolina researchers did, differentials in the

impact of rural residence by individual-level sociodemographic characteristics. It should be

noted that the designation of rural versus urban in this research differs from that of the North

Carolina research in that the classification used in the current study is at the ZCTA rather than

the county scale.

Characteristics of the population of ZCTAs where there were higher counts of newborns

with lead levels above the 5 μg/dL threshold included higher percentages of women with less

than a college education and with a higher proportion of older housing. Older housing stock

in both rural and urban Iowa is potentially associated with exposure to not only lead paint but

also lead piping, a known risk factor for elevated blood lead levels [36]. The Midwest has some

of the oldest housing stock in the US, and rural areas in particular have typically older housing

[81]. Analysis of NHANES (1999–2004) data indicated that Midwestern children had the high-

est percentage of elevated blood lead levels [82] NHANES data also indicate that blood lead

levels are inversely related to educational attainment[83]. Women with lower educational sta-

tus may be less aware of the dangers of trans-placental exposure to lead contamination during

pregnancy, engage in other risky behaviors such as smoking, or have less agency to decrease

exposure to sources of environmental contamination (i.e. less ability to paint over leaded

paint, to test for lead in water and replace pipes, move to another residential location away

from legacy lead in soil, etc.). Estimates of lead paint in households indicate that renter occu-

pied, low income and minority households, characteristics that are often spatially collinear

with educational attainment, have higher percentages of lead contaminated units [62].

The median household income, percentage of women living in poverty, and percentage

of foreign-born women were not significantly associated with elevated lead in newborn

blood samples. There was no difference in significant predictors according to rural or urban
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maternal residence, suggesting that the same risk factors apply regardless of population den-

sity. No covariates were significantly associated with increased counts of blood lead levels

>10 μg/dL. This is likely due to the very small number of samples (89, 3.7%) with levels above

this threshold; the parameters were unable to be well-estimated.

This study has several limitations. The first is that, due to the data collection process, we

lack individual-level information on the mothers of the sampled newborns. This means that

we cannot control for, or assess the contributing effects of, mothers’ age, race/ethnicity or

other risk factors, such as the age of the house in which they live or the country in which they

were born. Additionally, the samples collected over the 5 month period represent only 488 of

the 935 ZCTAs in Iowa; a longer reporting period would have captured samples from a wider

geographic distribution within the state.

This purely ecological analysis is also subject to flaws in the area-level data used as covari-

ates. The American Community Survey replaced the long-form Census as the primary method

by which data are collected on the US population. It contains many more items than the long-

form, but it is a statistical sample with high margins of error, which increase when the spatial

scale of analysis becomes smaller [84]. Despite this, however, ACS data are commonly used in

public health and other analyses at scales smaller than counties because no similar datasets are

available. As data were gathered in 2006, both population-level characteristics in Iowa as well

as blood lead levels in newborns may have changed since then. Finally, this study did not

examine variation in environmental lead sources, such as in soils or emitted from industrial or

other sites, which have shown spatial relationships with birth outcomes [57].

Many studies based on grouped data tend to provide inaccurate individual-level inferences.

In other words, ecological fallacy occurs when analyses based on grouped data lead to conclu-

sions different from those based on individual data [85, 86]. In general though, the associations

of the selected covariates with elevated blood lead levels in newborns were largely consistent

with individual level data from other studies. Although the covariate percent foreign-born

women in a ZCTA, which was dichotomized at the 75th percentile (2.45% foreign-born), was

not a significant predictor, inference was sensitive to the cut-point used for dichotomizing this

severely right skewed covariate. For instance, cut-points at the 25th percentile (0% foreign-

born) and the 50th percentile (0.7% foreign-born) led to inference suggesting that areas with

higher proportions of foreign-born women were associated with decreased blood lead levels.

Iowa is a largely rural state with a relatively homogeneous population (predominantly white);

it has substantially fewer foreign born women than other parts of the US. Dichotomizing this

variable, into a single foreign born woman of childbearing age present in a ZCTA or not, is

possibly the reason behind the unanticipated finding of lower blood lead levels among births

to foreign women. Having individual-level information on the mother, as previously men-

tioned, would be particularly beneficial in the case of this covariate.

While there are limitations in this study, it is the first to examine spatial patterns and eco-

logical correlates of newborn blood lead levels in Iowa and one of only a few papers to explore

blood lead levels in rural children. This study makes use of routinely collected dried blood

spots to estimate the lead levels of blood in a randomly chosen population of Iowa newborns,

finding that in a large share of the sample the levels of blood lead are above what is recom-

mended by the CDC. Further, the distribution of blood lead levels and of elevated blood lead is

similar across the rural and urban areas of Iowa. We also find that the characteristics of the

population and types of housing where a mother resided at the time of the birth of her child

are predictive of elevated blood lead concentrations, regardless of rural or urban residence.

This suggests similar landscapes of risk and the need for physicians serving rural patients to be

as aware of the dangers of lead poisoning as providers serving urban populations.
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Conclusions

The demographic characteristics identified in our analysis can guide the recommendation for

testing of mothers in the prenatal period and infants at well-baby appointments in certain

regions of the state where risk factors (old housing and low education) are present, potentially

leading to prevention and earlier initiation of case management. Rural newborns exhibit simi-

lar levels of elevated blood lead as urban newborns, suggesting that exclusively focusing on risk

in urban populations neglects a significant source of lead poisoning in US children.

Acknowledgments

This study was supported by a seed grant from the University of Iowa Center for Health Effects

of Environmental Contaminants (CHEEC). We acknowledge the assistance of MPH student

Benjamin Scott for his assistance in the early stages of the study.

Author Contributions

Conceptualization: MC AS KKR JO.

Data curation: BW DLS.

Formal analysis: MC DZ SGY JO.

Funding acquisition: AS KKR.

Methodology: MC DZ SGY JO.

Visualization: MC DZ SGY BW.

Writing – original draft: MC DZ SGY JO KKR AS.

Writing – review & editing: MC DZ SGY JO KKR DLS BW AS.

References
1. Téllez-Rojo MM, Hernández-Avila M, Lamadrid-Figueroa H, Smith D, Hernández-Cadena L, Mercado

A, et al. Impact of bone lead and bone resorption on plasma and whole blood lead levels during preg-

nancy. American journal of epidemiology. 2004; 160(7):668–78. https://doi.org/10.1093/aje/kwh271

PMID: 15383411

2. Hertz-Picciotto I, Schramm M, Watt-Morse M, Chantala K, Anderson J, Osterloh J. Patterns and deter-

minants of blood lead during pregnancy. American journal of epidemiology. 2000; 152(9):829–37.

PMID: 11085394

3. Harville E, Hertz-Picciotto I, Schramm M, Watt-Morse M, Chantala K, Osterloh J, et al. Factors influenc-

ing the difference between maternal and cord blood lead. Occupational and environmental medicine.

2005; 62(4):263–9. https://doi.org/10.1136/oem.2003.012492 PMID: 15778260

4. Rothenberg S, Karchmer S, Schnaas L, Perroni E, Zea F, Salinas V, et al. Maternal influences on cord

blood lead levels. Journal of exposure analysis and environmental epidemiology. 1995; 6(2):211–27.

5. Schell LM, Denham M, Stark AD, Gomez M, Ravenscroft J, Parsons PJ, et al. Maternal blood lead con-

centration, diet during pregnancy, and anthropometry predict neonatal blood lead in a socioeconomi-

cally disadvantaged population. Environmental health perspectives. 2003; 111(2):195. PMID:

12573905

6. Ettinger AS. Guidelines for the identification and management of lead exposure in pregnant and lactat-

ing women: US Department of Health and Human Services, Centers for Disease Control and Preven-

tion, National Center for Environmental Health/Agency for Toxic Substances and Disease Registry;

2010.

7. Canfield RL, Henderson CR Jr, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP. Intellectual

impairment in children with blood lead concentrations below 10 μg per deciliter. New England journal of

medicine. 2003; 348(16):1517–26. https://doi.org/10.1056/NEJMoa022848 PMID: 12700371

Spatial patterns of elevated blood lead levels in Iowa newborns

PLOS ONE | https://doi.org/10.1371/journal.pone.0177930 May 16, 2017 13 / 17

https://doi.org/10.1093/aje/kwh271
http://www.ncbi.nlm.nih.gov/pubmed/15383411
http://www.ncbi.nlm.nih.gov/pubmed/11085394
https://doi.org/10.1136/oem.2003.012492
http://www.ncbi.nlm.nih.gov/pubmed/15778260
http://www.ncbi.nlm.nih.gov/pubmed/12573905
https://doi.org/10.1056/NEJMoa022848
http://www.ncbi.nlm.nih.gov/pubmed/12700371
https://doi.org/10.1371/journal.pone.0177930
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